I’m testing a basic neural network model. But before go any further I’ve encountered this error shown in the screenshot.
Here is my code:
import numpy as np
# Training Data
x_train = np.array([[1.0,1.0]])
y_train = np.array([2.0])
for i in range(3,10000,2):
x_train = np.append(x_train,[[i,i]],axis = 0)
y_train = np.append(y_train,[i+i],axis = 0)
# Test Data
import numpy as np
x_test = np.array([[2.0,2.0]])
y_test = np.array([4.0])
for i in range(4,8000,4):
x_test = np.append(x_test,[[i,i]],axis = 0)
y_test = np.append(y_test,[i+i])
from tensorflow import keras
from keras.layers import Flatten # to flatten the input data
from keras.layers import Dense # for the hidden layer
# We'll follow sequential method i.e. one after the other(input layer ---> hidden layer---> output layer)
model = keras.Sequential()
# For input layer
model.add(Flatten(input_shape = x_train[0].shape)) # input layer
# For Hidden layer
model.add(Dense(2,activation = 'relu')) # '2' represents a no. of neurons
# For Output layer
model.add(Dense(1)) # By default, activation = 'linear'
# before training
bf_train = model.get_weights()
bf_train
The error is :
ValueError: Weights for model sequential have not yet been created. Weights are created when the Model is first called on inputs or build()
is called with an input_shape
.
Solution
You should not mix tf 2.x
and standalone keras
. You should import as follows
from tensorflow import keras
from tensorflow.keras.layers import Flatten # to flatten the input data
from tensorflow.keras.layers import Dense # for the hidden layer
Now, run the code and you will get some weight.
[array([[-0.43643105, -1.0268047 ],
[ 1.0003897 , 1.1105307 ]], dtype=float32),
array([0., 0.], dtype=float32),
array([[-0.19884515],
[-0.78100944]], dtype=float32),
array([0.], dtype=float32)]